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ABSTRACT

A high resolution, multi-level, primitive equation ocean
model is used to examine the response of an idealized, flat-
bottomed, eastern boundary oceanic regime on a beta-plane to
climatological average (1980-1989) and individual yearly
(1980-1983) wind forcing. The focus of this study is the
California Current System (CCS) along the coastal region, from
35° N to 47.5° N, of the Western United States. Five
experiments were initialized from a state of rest and two from
the fields remaining at day 360 from the climatological
average wind forcing. With the climatological average wind
forcing, a surface equatorward jet and poleward undercurrent
are generated. Eddies form along the entire eastern boundary
and a field of cyclonic eddies approximately 200 km in
diameter remain at day 360. Results for the non-El Nifio (1980-
1981) years are very similar to the results for the
climatological average wind forcing. Early in the year, the El
Nifio wind fields for 1983 are more intense than the average
and 1980-1982 winds, and they have a much stronger poleward
component. A surface poleward current develops over an
equatorward undercurrent. After day 120 the winds have an
equatorward component throughout the model domain, and eddies
are generated, but the upwelling starts later and is weaker

than in the non-El Nifio years. When the 1980 winds are used to
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force with the fields left at day 360 from the climatological
average wind forcing as initial conditions, the current and
eddy system generated is more similar to CCS observations than
the results of the experiments initialized from rest. Cold
filaments form at the coast and extend to more than 400 km
offshore. With the 1983 winds initialized from the
climatological results, more poleward flow is seen at the
surface early in the year. Cold filaments still develop, but
later in the year and they do not extend as far offshore as in
1980. The overall current and eddy system is weaker and sea
surface temperatures are warmer than in 1980. This leads to
the conclusion that anomalous wind forcing is extremely

important in generating CCS El Nifio events.
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I. INTRODUCTION

The California Current System (CCS) is a complex system of
eddies and meandering jets superimposed on a mean equatorward
surface flow which extends approximately 1000 km westward from
the coast. There have been several major observaticnal
experiments focusing on the CCS in the past decade, including
the Coastal Upwelling Experiments (CUE-I and CUE-II), Coastal
Ocean Dynamics Experiment (CODE), Ocean Prediction through
Observations, Modeling and Analysis (OPTOMA), and Coastal
Transition Zone (CTZ).

In order to get an accurate picture of the mesoscale
variability of the CCS, an observational experiment requires
a very fine (~25-50 km) mesh covering most of the west coast
of the United States, a prohibitively expensive endeavor. In
this light, much of the current work on the CCS consists of
attempts to model the features seen in the extensive
observational experiments that have already been conducted.
Batteen et al. (1989) demonstrated how a steady equatorward
wind forcing a non-linear primitive equation (PE) model could
generate a reasonable coastal equatorward jet, poleward
undercurrent and eddy field similar to the CCS. This study
extends their process-oriented work by forcing the same model
with yearly instead of steady winds. It is designed to explain

the role of interannual variability in wind-forced generation
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of the eddies and filaments that have been observed in the
CCS. Yearly winds from 1980 through 1983 are used in the
study. This particular period of time is chosen in order to
also examine the response of the CCS to changes in wind
forcing during an E1 Nifio event. In addition, a set of
climatological average winds from the period 1980-1989 is used
to force the model, in order to generate a baseline average
CCS and to spin up the model for two experiments.

This thesis is organized as follows. Chapter II describes
the background for the region being modeled as well as the
type of winds used to force the model. It also briefly
discusses some models used in the past to simulate eastern
boundary current systems. Chapter III describes the model and
the experimental design. Results are presented in Chapter IV.
Chapter V consists of a summary of the results, conclusions

and recommendations for future work.




II. BACKGROUND

A. REGIONAL DESCRIPTION

The California Current System (CCS) is a classical east
boundary current system. The climatological mean CCS consists
of four currents: the California Current, the Davidson
Current, the California Undercurrent and the Southern
California Countercurrent (Hickey, 1979). The California
Current (CC) is a broad, slow (~10 cm s') surface equatorward
flow that can extend 1000 km offshore. It represents the
eastern limb of the North Pacific gyre (Lynn and Simpson,
1987), and is driven by the semi-permanent North Pacific High
(Huyer, 1983). It is a shallow (300 m) current, characterized
by low temperature, low salinity and high dissolved oxygen
(Lynn and Simpson, 1987). The core of the CC is located
between 100-200 km from the coast, with average current speeds
of less than 25 cm s', but core velocities in excess of 75 cm
s' have been observed (Brink et al., 1991).

It is generally recognized that flow within 100 km of the
coast is part of a separate current (Chelton, 1984; Hickey,
1979). This current is notable in its seasonable variability.
From February to September it flows equatorward, and merges
with the CC flow. From November to February, however, the
current reverses direction and flows poleward in the region
between Pt. Conception and Cape Mendocino (Hickey, 1979).

3




During its poleward phase it is known as the Davidson Current
(Chelton, 1984; Hickey, 1979). It should be emphasized that
this picture of the nearshore flow is true only in the
interannual mean sense, and northward flow has been observed
during all months of the year (Chelton et al., 1988; Freitag
and Halpern, 1981).

The third major current in the CCS is the poleward flowing
California Undercurrent (CU). The CU is found over the
continental shelf, usually near the shelf break, at an average
depth of 200-250 m, with a vertical extent of approximately
300 m (Wickham et al., 1987; Hickey, 1979). The flow varies in
width from 20-70 km (Hickey, 1979; Reid, 1962). The average
core velocity is greater than 15 cm s', with instantaneous
observations over 40 cm s! (Hickey, 1979; Reid, 1962). As the
CU progresses poleward it appears to strengthen, and has a
vertical extent in excess of 500 m off the Washington coast
(Reed and Halpern, 1976). In the wintertime the CU shoals and
merges with the Davidson Current and poleward flow is seen
from the surface to the bottom over the continental shelf
(Huyer et al., 1989).

The Southern California Countercurrent (SCC) is an area of
semi-permanent eddy-like circulation in the California Bight,
and appears to be formed by wind patterns off Pt. Conception
and bottom topography in the area (Lynn and Simpson, 1987).
This current is south of the area modeled in this study and

will not be discussed further.
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Recent observations have shown that the CCS is more
appropriately described by a series of highly energetic
mesoscale eddies, meandering jets and filaments superimposed
on the classical broad, slow surface equatorward current
(Bernstein et al., 1977; Chelton, 1984; Mooers and Robinson,
1984). Irregqularities in the CCS flow were noted as early as
1950 (Reid, 1988), but it took the advent of satellite
technology to truly appreciate the variability of the CCS
(Fig. 2.1). The core of the CC takes on the form of a
meandering jet, with wavelengths of 300-500 km (Bernstein et

al., 1977). The meanders are associated with cyclonic and

, anticyclonic eddy pairs, and with cold filaments extending

away from the coast. The filaments can extend up to several
hundred kilometers offshore, with widths of 30 km and
temperature changes of 1-3°C across their boundaries
(Bernstein et al., 1977). Peak current speeds in the
filaments have been measured at 80 cm s! (Kosro and Huyer,
1986) . These features add up to a more realistic description
of the CCS as a constantly evolving system of currents with
filamented jets and mesoscale eddies modifying the mean

egquatorward flow (Mooers and Robinson, 1984).




B. CLIMATOLOGICAL WINDS

Interaction between the North Pacific High and the
southwest United States thermal low (Fig. 2.2) establishes the
summer wind patterns seen in the CCS (Nelson, 1977; Halliwell
and Allen, 1987). The wind regime is complicated on shorter
scales Dby interaction with atmospheric disturbances
propagating through the area (Halliwell and Allen, 1987), and
with other atmospheric mesoscale phenomena (Huyer, 1983).
Within 100-200 km of the shore, the winds are also affected by
coastal atmospheric boundary layer processes, resulting in
measured wind fluctuations strongly polarized in the
alongshore direction (Halliwell and Allen, 1987).

The climatological average summer wind stress near the
shore is equatorward, and thus is favorable for coastal
upwelling. An alongshore wind stress time series compiled over
nine years by Strub et al. (1987) clearly depicts the
dominance of equatorward wind stress during the summer.
Halpern (197€) found similar conditions of equatorward wind
stress during July and August in a study conducted off the
coast of Oregon. Climatological wind stress fields for the
months of June, July and August (Figs. 2.3, 2.4, and 2.5,
respectively) show the regions of maximum wind stress (shaded)
that extend along the California coast from Cape Mendocino to
Point Conception. The maximum in wind stress is located off
Point Conception in March (not shown), and migrates to the

north as the North Pacific High moves northward, reaching Cape
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Mendocino in June (Fig. 2.3) or July (Fig. 2.4). In the winter
(Fig. 2.2), the Aleutian Low moves to the southeast, and there
is a split in the winds near Cape Mendocino (approximately
40°N), with poleward winds to the north of the Cape and
equatorward winds to the south.

Smith (1968) showed that open ocean upwelling can occur if
there is positive wind stress curl away from a coast. There is
positive wind stress curl at the west coast during all months
of the year, with the strongest curl occurring from May to
September (Nelson, 1977; Halpern, 1976). Wind stress curl
fields for the months of June, July and August (Figs. 2.6,
2.7, and 2.8, respectively) show the shift from positive wind
stress curl near the coast to negative curl farther offshore.
The transition zone, located approximately 200-300 km
offshore, is associated with the offshore maximum of the
alongshore wind stress. Bakun and Nelson (1991) found that the
cyclonic curl nearshore leads to divergent Ekman surface
transport, upward Ekman pumping, oceanic upwelling and
poleward Sverdrup flow. In the offshore (anticyclonic eurl)
region, they found convergent Ekman transport, downward Ekman
pumping and equatorward Sverdrup flow.

The importance of wind stress and wind stress curl in the
current dynamics and upwelling of the CCS is well documented
(e.g., Huyer, 1983; Nelson, 1977; Chelton, 1984; Hickey,
1979). Edson (1989) found that when the wind stress curl is

dominant over the wind stress itself, as in the wintertime, a
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surface poleward flow develops nearshore, with equatorward
flow offshore. When the wind stress is dominant, as in the
summertime, a coastal surface jet develops over a poleward
undercurrent. Wind stress data have been correlated with
satellite infrared imagery of eddies and filaments,
illustrating the possible importance of wind stress in these
mesoscale processes (Wickham et al., 1987). Other modeling
studies have supported this idea, and the thrust of this
research is to continue to study the role of wind forcing in
eddy and jet formation, focusing on the interannual

variability of monthly mean wind stress fields.

C. EL NINO

The El1 Nifio/Southern Oscillation (ENSO) phenomenon has
been extensively studied for many years. It has long been
recognized that an equatorial El1 Nifio signal can propagate
from the tropics northward to the northeastern Pacific Ocean.
There are two possible teleconnections between these two
regions. The first is an oceanic teleconnection, consisting of
poleward propagating coastal Kelvin waves that are generated
when the eastward traveling equatorial Kelvin waves turn
poleward at the South American coast (Rienecker and Mooers,
1986) .

The second teleconnection is an atmospheric one, where
tropical sea surface temperature (SST) anomalies are linked to

the Aleutian Low by momentum transfer through an intensified




Hadley circulation (Bjerknes, 1966; Philander, 1990). The
Aleutian Low deepens and moves to the southeast, displacing
the North Pacific High, which moves offshore and weakens
(Figs. 2.9, 2.10). This results in strong poleward wind stress
at the coast north of approximately 36°N. Trenberth et al.
(1990) found that the Aleutian Low was much deeper than normal
in the winter of 1982-1983, and that the maximum positive wind
stress anomalies were seen between 35° and 45°N (Fig. 2.11).
Simpson (1983) concluded that the 1982-83 Californian El Nifio
was probably linked to the concurrent equatorial El1 Nifio
mainly through the atmospheric teleconnection. (This study
isolates the response of the CCS to changes in wind forcing
only, and should show at least the qualitative response of the
CCS to the changes in atmospheric forcing during the 1982-1983
El Nifo.)

The 1982-1983 El Nifio was perhaps the most intense El Nifio
observed during this century. SST anomalies were first seen in
autumn 1982 off the California coast, increasing to a positive
peak in March-April 1983 (Rienecker and Mooers, 1986). The
properties of the anomalous water mass along the California
coast indicate that it came from the south and west, and was
associated with onshore transport. Thus the 1982-1983
California El1 Nifio could not have been solely due to the
poleward propagation of coastal trapped waves, as they have no
cross-shore component of velocity (Simpson, 1984). Negative

subsurface salinity anomalies in the same time period could
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have been caused either by depression of the thermocline due
to the offshore propagation of Rossby waves, or to increased
onshore advection from the anomalous wind fields. This
indicates that the El Nifio signal seen off California is at
least partly due to the anomalous atmospheric forcing. The
wind fields used in this study show strong poleward winds over
the entire model domain for the first three months of 1983
(Fig. 4.11a), consistent with a picture of enhanced onshore

advection due to Ekman veering.

D. NUMERICAL MODEL STUDIES

Over the past 25 years, there have been numerous attempts
at modeling eastern boundary current systems, and the CCS in
particular has been the focus of many modeling studies. A
brief discussion of some of the more relevant studies follows.

Philander and Yoon (1982) studied the response of an
eastern boundary current system to equatorward curl-free winds
that varied on a period related to that of both Rossby waves
and coastal trapped (Kelvin) waves moving through the current
system. They found that at wind fluctuations with a period
between that of a Kelvin wave and a Rossby wave, the current
response was trapped within a baroclinic radius of deformation
(~30 km at our study latitude) of the coast. When the wind
fluctuations were of a longer period than that of Rossby waves

(200 days), the offshore 1length scale increased to the
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distance a Rossby wave could travel in that period of time,
and the resultant current system resembled that of the CCS.

McCreary et al. (1987) forced two linear models, one with
a flat bottom and the other with an idealized continental
shelf, with various wind fields. Steady, equatorward, curl-
free winds resulted in an equatorward surface jet and a
poleward undercurrent. Steady, equatorward winds with positive
curl developed a deep, broad poleward surface current near the
coast, as predicted by Sverdrup theory. This experiment also
generated equatorward flow farther offshore, but still in the
region with positive wind curl. An idealized form of the
observed wind fields off California resulted in a modeled CCS
that agreed well with observations, but only if the forcing
included remote winds off Baja California (outside the region
being modeled). The results of this experiment suggested that
the Davidson Current is a result of the wind stress curl
dominating in the winter time, and the equatorward jet and
poleward undercurrent are generated when the wind stress is
stronger thqn the curl. Their model used Laplacian diffusion,
and did not develop eddies or filaments.

Batteen et al. (1989) used a primitive equation, multi-
level model with biharmonic heat and momentum diffusion, and
the wind forcing again was steady and eguatorward, with or
without alongshore variability. As before, the constant wind
stress resulted in an equatorward jet overlying a poleward

undercurrent. The biharmonic diffusion allowed the development
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of eddies and filaments when the baroclinic shear between the
jet and the undercurrent became strong enough. The winds that
varied in the alongshore direction 1led to preferential
geographic areas for eddy/filament generation. No experiments
were run with winds that contained a wind stress curl
component .

Pares-Sierra and O'Brien (1989) forced a reduced gravity
model with either wind stress, remote forcing from results
from an equatorial model, or both. Their objective was to
examine the oceanic connection between the CCS and the
equatorial region, and also to investigate the relative
dominance of either the atmospheric or oceanic teleconnection
in an El Nifio event. They found that most of the interannual
variability in sea level at the coast is determined by the
remote forcing, while the seasonal variability is due to local
wind forcing. This suggests that the oceanic teleconnection is
mainly responsible for the propagation of equatorial El Nifo
events up the coast.

Mitchell (1993) continued the work of Batteen et al.
(1989) by forcing that model with different sets of temporally
and/or spatially averaged winds. He found that the most
realistic results were obtained by forcing the model with a
set of full climatological, seasonally varying wind fields.

This study will extend the work of Batteen et al. (1989)
and Mitchell (1993) by enlarging the model domain from ~500 x

1000 km to ~1000 x 1500 km, and forcing the model with
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interannual rather than steady or seasonal wind forcing. Even
though the model domain is almost doubled, the resolution is
similar (8 x 13 km versus 8 x 17 km for Mitchell). Winds
before and during the 1982-83 El1 Nifio event were chosen for
the study. The study period encompasses a time of abnormally
large interannual variability, and is well suited to observing
the CCS response to those changes. In addition, it is
anticipated that the El Nifio signature due to the atmospheric
teleconnection will be observed in the 1982 and 1983

experiments.

13




4

18 Tune, 1993

Figure 2.1: Infrared satellite image of CCS from 18 June,
1993, extending from approximately 36°-40°N Latitude, 121°-
128°W Longitude
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Figure 2.2) Long-term mean atmospheric pressure at sea level
for January and July (from Huyer, 1983).
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Figure 2.10: A schematic diagram of the Pacific North
American (PNA) pattern of middle- and upper-tropospheric
geopotential height anomalies during a Northern Hemisphere
winter that coincides with E1l Nifilo conditions in the
tropical Pacific (from Philander, 1990).
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III. MODEL DESCRIPTION

The numerical model used in this research was developed
by Haney (1974, 1985) for a closed basin, and later adapted by
Batteen (1989) and Batteen et al. (1989) for application to
limited area eastern boundary current regions with open
borders on the northern, western and southern boundaries. The
model has been thoroughly described in Batteen et al. (1989)

and is summarized here.

A. MODEL EQUATIONS

To investigate the role of interannual variability in
wind forcing on the generation of currents, eddies and
filaments in the cCS, the wind stress fields, described below,
were used to specify the wind forcing for a high-resolution,
multi-level, primitive equation (PE) model of a baroclinic
ocean on a f-plane. The model is based on the hydrostatic,
Boussinesq, and rigid 1lid approximations. The governing
equations may be written in the above framework as:

a. Momentum Equations:

du_-13p! &u
3t p, ax+fv AmV‘u+K,,azz+6d(u) (3.1)
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aZ
5_7.1.92 fuaPver, TY 08, (v) (3.2)

b. Continuity Equation:

au av
w-j (55 & (3.3)

c. Vertically Integrated Hydrostatic Equaticn:

p’=f png—-f [f pgdf] dz (3.4)

d. Equation of State:

P=p,(1-a(T-T,)) (3.5)

e. Thermodynamic Equation:

F

dar,_ e s LT0, 48,01 (3.6)

=-a,WT+K,
VT A NV T+

In the equations, (x,y,z) is a right-handed coordinate system,
with x positive toward shore, y alongshore, and z upward. The
corresponding velocity components are (u,v,w), t is time, T is
temperature, p is density, and p' is the departure from the
vertically averaged pressure. The Coriolis parameter f is a

linear function of latitude, so that f = f, + By. This
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approximation allows use of either the f-plane or the f-plane.
In this study we used the f-plane approximation in order to
allow the propagation of Rossby waves. In equations (3.3) and
(3.4), ¢ is a dummy variable of integration. Equation (3.5) is
a linearized equation of state that assumes that density is a
function of temperature only. This assumption has been shown
to be consistent with the region being modeled (Lynn et al.,
1982). Salinity is a good tracer for water masses in the CCS
(Huyer and Kosro, 1987; Lynn and Simpson, 1987), but there are
no major salinity sources or sinks in the region being
modeled, and inclusion of salinity in the equation of state is
not necessary for a zero-order description of the CCS. In
(3.6), Q, = 0S/p,C92 is the heating due to solar radiation,

where

S=S, (Re*/ %+ (1-R) */%) (3.7)

Sy is the downward flux of solar radiation at the surface, R
= 0.62 is the fraction of solar radiation absorbed in the
upper few meters of the water column (2, = 1.5 m), and (1 -
R) = 0.38 is the fraction that penetrates to deeper levels (z,
= 20 m) as given by Paulson and Simpson (1977). The §,(u),
§;(v), and §,(T) terms represent the vertical turbulent mixing
of momentum and heat by a dynamic adjustment mechanism. This
adjustment is a generalization of the convective adjustment

mechanism, and is based on the assumption of a critical

27




Richardson number. The dynamic adjustment mechanism serves to
maintain dynamic stability in the water column (Adamec et al.,
1981).

The boundary conditions at the top (2=0) of the model

are:

du_ <~
Km-a—z— Po (3-83)
l ov_ 1Y
Km-gg > (3.8b)
K;g§=-c5 (3.8c)
w=0 (3.84d)

and at the bottom (z = -H) they are:

du

K"'_z =Cp(u?+v?)¥/2 (ucosy-vsiny) (3.9a)
K,,g—;’=c,,(u2+v2) /2 (veosy-usiny) (3.9b)
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K-QI=0 (3.9¢c)

w=0 (3.94)

In (3.8a,b), 1* and 1’ are the cross-shore and alongshore
components of the surface wind stress. In (3.8c), Q is the
net upward flux of longwave radiation, sensible and latent
heat across the sea surface. The bottom stress in (3.9a,b)
represents one of the simplest possible parameterizations of
a bottom Ekman layer. The geostrophic inflow angle (Weatherly,
1972), v, is 10°. Table 3.1 provides a list of other symbols
used in the model equations, as well as values of constants

used in this study.

B. MODEL DOMAIN AND RESOLUTION

The domain of the model is a rectanqular region extending
from 35°N to 47.5°N and 12° in longitude from the west coast
of the United States. The model extends from approximately
Pt. Conception, California in the south to Cape Elizabeth,
Washington in the north. The domain size is approximately 1024
km in the offshore direction and 1664 km alongshore. The
horizontal resolution of the model is 8 km in the cross-shore
direction and 13 km in the alongshore direction. This
horizontal grid resolution should allow realistic spatial

resolution of mesoscale features in the CCS, which have
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typical wavelengths on the order of 100 km (Breaker and
Mooers, 1986). In order to concentrate on the role of wind
forcing only in the generation of eddies and jets, variations
in the coastline and bottom topography are omitted from this

version of the model.

C. FINITE DIFFERENCE SCHEME

The numerical model used in this study is a staggered
grid model, using the Arakawa and Lamb (1977) B-scheme, which
has u and v defined at the center point of a grid box and T,
p, W, and p at the corners. There are 10 layers in the
vertical, separated by constant z-levels at 13, 46, 98, 182,
316, 529, 870, 1416, 2283 and 3656 m. This method of vertical
spacing is designed to concentrate more layers in the upper,
more dynamically active surface region above the main
thermocline (Haney, 1974). Time stepping consists of a Matsuno
(backward) time step followed by ten leapfrog time steps, with

this pattern repeating throughout the model run.

D. HEAT AND MOMENTUM DIFFUSION

Biharmonic lateral momentum and heat diffusion are used
in the model in order to ensure that the friction acts on a
scale smaller than the mesoscale features we are trying to
observe (Holland, 1978; Holland and Batteen, 1986). Laplacian
diffusion tends to suppress baroclinic instability processes
at the mesoscale level and is not appropriate for a mesoscale

eddy resolving model.
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E. SURFACE THERMAL FORCING

In order to isolate the effects of wind forcing on
generating thermal variability in the CCS, the surface thermal
‘cing for this model is highly simplified. The solar
radiation at the surface, S,, is specified to be the
sunmertime mean CCS value from Nelson and Husby (1983). The
sum of the net longwave radiation, latent and sensible heat
fluxes, Qz, was computed during the model experiments from
standard bulk formulas (Haney et al., 1978), using the read-in
wind fields, summertime mean CCS values for cloud cover,
relative humidity, air temperature, and model-predicted sea
surface temperature (Haney et al., 1978). The initial sea
surface temperature was chosen such that there would be no net
heat flux across the sea surface at time t = 0 (i.e. S, - Q3
= 0). Therefore the only surface thermal forcing in the model
is that which develops in Q; as a result of wind-forced
fluctuations in sea surface temperature. Further justification
and a more detailed description of this formulation may be

found in Batteen et al. (1989) and Haney (1985).

F. HORIZONTAL BOUNDARY CONDITIONS

The eastern boundary of the model domain is closed, and
is modeled as a straight, vertical wall. The kinematic
boundary condition of no flow through the boundary is imposed
on the cross-shore (u) velocity component. Either free-slip or

no-slip boundary conditions can be applied to the alongshore

31




(v) velocity component. In this study, a no-slip condition is
invoked.

The northern, southern and western boundaries are open,
and use a modified version of the radiation boundary
conditions of Camerlengo and O'Brien (1980). Some spatial
smoothing is also applied within 5 grid-points (~50 km) of the
open boundaries.

In previous experiments with steady equatorward wind
forcing applied to the northern and southern open boundaries,
an alongshore current developed that was too strong, too deep
and oriented equatorward at all depths (McCreary, 1981). In
order to generate a realistic current system, the wind forcing
was applied in a latitudinal band such that there was no wind
stress near the northern and southern boundaries. This method
allows poleward propagating Kelvin waves to be generated at
the southern end of the wind forcing region, which produces an
alongshore pressure gradient. This traps the equatorward jet
at the coast and generates the poleward undercurrent (Batteen
et al., 1989). The temporal and spatial variability in the
"real" wind forcing, however, avoids this problem, with the
result that we can apply wind forcing to all the boundaries

for this study.

G. INITIAL CONDITIONS
All of the experiments except the spun up runs were

started from a state of rest. The initial mean stratification
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used in all experiments is an exponential temperature profile

with a vertical length scale of h = 450 m. The exact form is:

T(z) =Ty+ATe*" (3.10)

The approximation assumes T, = 2°C to be the temperature
at great depth, and AT = 13°C to be the increase in
temperature between the bottom of the ocean and the surface.
This temperature profile is the same profile used by Batteen
(1989) and Batteen et al. (1989), and was derived by Blumberg

and Mellor (1387) from available CCS observations of the long-

~ term, mean climatological temperature stratification for the

CCS region as a whole.

H. WIND DATA DEBCRIPTION

The model is forced with surface wind fields from the
European Centre for Medium Range Weather Forecasts (ECMWF)
surface wind analyses (Trenberth et al., 1989). Monthly mean
stresses on a 2.5° x 2.5° grid based on twice-daily 1000 mb
wind analysés were interpolated spatially to the 8 x 13 km
model resolution, and temporally to daily wind values. Winds
from 1980-1983 were |used, as well as a 120-month
climatological average for the period 1980-1989. The 1980-1983
period was chosen due to the high degree of interannual
variability in the winds that should be evident over the

period before and during the 1982-83 El1 Nifio event. The
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climatological average wind fields were used as a baseline for
comparing the individual runs, as well as to spin up the model
for one year prior to the 1980-1983 continuous run.

Since the interpolated winds were created from monthly
winds on a 2.5° x 2.5° grid, any possible manifestation of
short-term or small-scale wind events is not resolved. Only
seasonal or long-term, large-scale events such as wind field
changes during an El Nifio are preserved in the original ECMWF
fields. It is anticipated that future experiments will be
forced with winds that have higher spatial and temporal
resolution, but these winds are certainly adequate for this

process-oriented study.

I. EXPERIMENTAL DESIGN

The first experiment is forces with <the 120-month
climatological wind fields. The subsequent four experiments
are forced with the 1980-1983 winds. These five experiments
are run for a period of 360 days each. Next a sixth and
seventh experiment are each spun up for one year with the
climatological wind fields and then forced with the 1980 and
1983 winds, respectively. Experiments one through five are
started from rest in order to compare exactly when eddy
formation is seen in each year. Experiments six and seven are
intended to provide an idealized picture of what the
interannual wind fields will do to the existing eddy fields

left from the prior year.
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I. ENERGY ANALYSIS TECHNIQUES

The energy analysis technique used by Batteen et al.
(1992) is used to analyze the generation of eddies, jets and
filaments in the CCS. The following is a summary of their
description of that technique.

The energy calculations are presented using the Semtner

and Mintz (1977) notation:

Ty time average

() time deviation

() horizontal space average
()= horizontal space deviation

The kinetic energy (K) is calculated by:

K=”_221!2. (3.11)

After reaching a quasi-steady state in which the total
kinetic energy is nearly constant, the time mean and time eddy

kinetic energy are calculated by:

7(:32*"2 (3.12)
2
K/=-‘72;72 (3.13)

Available potential energy (P) is calculated by:
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P=ag[%(r')=(§§)-11 (3.14)

which determines when a quasi-steady state is reached and
statistics can be collected. The temporal mean and eddy

available potential energy are then calculated by:

Peag(l (T)2(3T)- 3.15
GQ[Z(T‘) (az) 1] ( )
/e 17wy2 9T 3.16
P ¢9[2(7") (az) ] ( )

The transfers between the energy types are defined, after

Semtner and Mintz (1977), by:

{R = P} =-ag[Tw] (3.17)

{P -~ K'} =ag[T'w] (3.18)
{K - K'}=v(Ve +a—iW) (3.19)
(P ~P') =.=zg[7*v-v/z~"f~<.fgw = (3.20)
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The model output consists of velocity components and
temperature at specified intervals at each gridpoint. Neither
the vertical velocity nor advection terms calculated by the
model are stored. As the calculation of the energy transfers
reguires both vertical velocity and numerous advection terms,
these are recalculated in the same manner as during a model
run, but using the stored values of u, v, and T as the input
data. These recalculated energy transfers are consistent with
the initial calculations of vertical velocity and advection
terms obtained during the model run.

Semtner and Mintz (1977) applied their energy transfer
analysis to curr..ts which had become unstable, generated
eddies and then reached a quasi-steady state. In this study,
the quasi-steady energy state prior to and during eddy
formation is examined, and the energy transfer analysis is
used to argue for the instability mechanism (baroclinic vs.

barotropic) which leads to eddy generation.
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Table 3.1 VALUES OF CONSTANTS USED IN THE MODEL

0.958 cal gm!(°K)"

specific heat of sea water

1.225 x 10°?

bottom drag coefficient

278.2°%1

constant reference temperature

1.23 x 10° gm cm?

density of air

1.0276 gm cm’

density of sea water at T,

2.01 x 10* (°K)’

thermal expansion coefficient

10

number of levels in vertical

8.0 x 10° cm

cross-shore grid spacing

13.0 x 10° cm

alongshore grid spacing

4.5 x 10° cm

total ocean depth

800 s

time step

0.93 x 10* s’

mean coriolis parameter

980 cm s

acceleration of gravity

2 x 10" cm's?!

biharmonic momentum diffusion

=======a============

coefficient

2 x 10" cm's?!

biharmonic heat diffusion coefficient

0.5 cm® s’

vertical eddy viscosity

vertical eddy conductivity
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IV. EXPERIMENT RESULTS

Experiments 1 through 5 study the effects of forcing a
model domain that is initially at rest with climatological
average and annual (1980-1983) wind fields. Experiments 6 and
7 use the 1980 and 1983 wind fields, respectively, to force a
model domain that has been spun up for a period of one year
with the climatological average wind fields. (Note that all
figures of horizontal surface fields are shown five gridpoints
(52 km) from the northern and southern model boundaries, in
order to stay away from smoothed regions. This means that the
figures display the interior of the model region, from

approximately 35.5° to 47°N.)

A. RESULTS OF EXPERIMENTS BTARTED FROM REST
1. Experiment 1

In Experiment 1 the model was forced with the
climatological average (1980-1989) wind fields. The wind
forcing at the beginning of the year has a poleward component
north of approximately 40°N and an equatorward component south
of 40°N (Fig. 4.1a). The wind shifts as the North Pacific High
moves onshore (Fig. 4.1b), and has an equatorward componert
throughout the model domain by day 180 (Fig. 4.1c). The winds

intensify until day 255 (Fig. 4.1d), then start to weaken as
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the North Pacific High moves southwest, and are divergent at
40°N again by day 300 (Figs. 4.1le).

An equatorward coastal jet forms in the southern
portion of the model domain by day 60 (Fig. 4.2a). Evidence of
upwelling is also seen in the colder surface temperature field
near the coast (Fig. 4.2b). Eddies begin to form in the
southern part of the model domain by day 120, as seen in the
zonal velocity field (Fig. 4.3). (Since the velocity field at
this point in the wodel year is primarily meridional,
perturbations in the 2zonal velocity field are easily
discernibie.) Evidence of eddy formation in the surface
temperature field is not seen until day 144 (Fig. 4.4), when
meanders of the isotherms in the southern region of the domain
are evident. A cross-section of meridional velocity at 43°N in
the area of eddy formation at day 120 (Fig. 4.5) shows a
surface equatorward jet with a maximum speed of approximately
35 cm s! overlying a weaker poleward undercurrent centered at
around 200 m depth.

Eddies form in the southern region of the model domain
first. Although the fg-plane effect would encourage eddy
formation in the north, the longe» duration and greater
strength of the equatorward wind forcing in the south results
in eddy generation in the soutrern portion of the domain. The
eddies continue to form and the growth region moves to the
north, until the entire eastern boundary regicn of the model

domain contains mature eddies by day 285 (Figs. 4.6a,b,c).
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Both baroclinic and barotropic instabilities play a
role in eddy formation at day 120, with energy very nearly
equally partitioned between the two (Figs. 4.7a,b). Baroclinic
instability comes from the vertical shear in the mean flow,
while barotropic instability comes from the horizontal shear.
An inspection of the cross-section of meridional velocity at
43°N at day 120 (Fig. 4.5) shows that there is, indeed, both
vertical and horizontal shear evident in the eddy formation
region.

When the winds are at their weakest strength at day
345 (not shown), the horizontal shear in the mature eddy field
is much stronger than the vertical shear. A comparison of
baroclinic (not shown) and barotropic instability (Fig. 4.8)
shows that barotropic instability is dominant over the entire
model domain. This indicates that the mature eddy field
contains mostly horizontal shear. A cross-section of
meridional velocity in the northern part of the model domain
at 46.5°N shows that the poleward undercurrent has moved to
the surface and forced the equatorward jet offshore (Fig.
4.9). By comparing the surface zonal velocity at day 345 (Fig.
4.10) with the barotropic instability (Fig. 4.8), we see that
the regions of strongest barotropic instability are associated
with the southeastern edges of the eddies near the coast, and

with the edge of the equatorward jet.
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2. Experiments 2, 3, and 4

The results for the experiments forced by the 1980,
1981 and 1982 winds were quite similar to those for the
climatological average wind fields summarized above. Pertinent
figures from these experiments are included as an Appendix.

3. BEBxperiment S

The 1983 winds were dramatically different from the
climatological average and 1980-1982 winds, especially during
the first three months of the year. At the start of the year
the winds contained a strong poleward component throughout the
entire model domain (Fig. 4.11la). The strong poleward
component in the northern part of the domain was seen until
day 90 (Fig. 4.11b). The winds then shifted rapidly,
developing an equatorward component throughout the model
domain by day 105 (not shown). After day 120 (Figs.
4.11c,d,e,f), the 1983 winds were quite similar to the
climatological average and previous years.

The intense poleward winds in the beginning of the
year generated a poleward coastal jet by day 15 in the
northern region of the model domain (not shown). The ijet
continued to intensify, and eddies began to form in the
northern region by day 66, as shown by perturbations in the
zonal velocity (Fig. 4.12a). In this case, meanders in
temperature (Fig. 4.12b), velocity (4.12c) and dynamic height

(Fig. 4.12d) showed up at the same time as the perturbations
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of zonal velocity, indicating that the eddy formation is a
more intense process than that seen in Experiments 1-4.

Both barotropic and baroclinic instabilities play a
part in eddy formation (Figs. 4.13a,b), but the area of eddy
formation has moved to the northern region of the model
domain. In this area the f-plane effect will encourage eddy
formation, and the amount of energy being converted (up to 90
ergs cm?® s') is much higher than that (up to 7.6 ergs cm?® s')
in Experiment 1 (Figs. 4.7a,b). A cross-section of meridional
velocity at 46.5°N at day 66 (Fig. 4.14) shows a relatively
strong (approximately 15 cm s!) poleward jet overlying a weak
equatorward undercurrent, exactly the opposite of the flow
seen in 1980-1982 (e.g., compare Fig. 4.14 with Fig. 4.5).

After the winds shift and become largely equatorward
throughout the model domain, eddies develop in the south as in
the earlier experiments. The zonal velocity field (Fig. 4.15a)
at day 159 shows large (up to 150 km in diameter) eddies in
the northern region and smaller eddies forming in the central
and southern regions. Note that the large eddies in the
northern region show up in the dynamic height field as
positive anomalies (Fig. 4.15b). These eddies are associated
with the poleward winds and onshore transport, have warm cores
(not shown), and are anticyclonic. (In contrast, the eddies
formed by equatorward winds were cyclonic, with cold cores,
and show up as negative dynamic height anomalies.) A cross-

section of meridional velocity at approximately 41°N at day
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159 shows the more common mean state of the CCSs, with an
equatorward jet overlying a poleward undercurrent (Fig. 4.16).
As in previous years, both baroclinic and barotropic
instabilities (Figs. 4.17a,b) play a role in the eddy
formation near the coast, as expected with the now prevalent
equatorward winds. A comparison of Figures 4.17a,b with
Experiment 1 (Fig. 4.7a,b), however, shows that the rate of
energy conversion is much higher in 1983 than in the

climatological average.

B. RESULTS OF EXPERIMENTS SPUN UP FROM CLIMATOLOGICAL WINDS
1. Experiment 6

Experiment 6 was forced with the 1980 winds, using the
temperature and velocity fields at day 360 in Experiment 1
(climatological average wind forcing) as initial fields. Since
the run starts with an existing eddy field, it is expected
that wind forcing effects will be noticed earlier in the year.
In the 1980 experiment started from rest, eddy formation
started on day 90 (Appendix 1, Figs. A.1-A.5), whereas in this
experiment new eddies began to form by day 60 (Fig. 4.18).
(Note: Since this run started at day 360, the Figures are
labeled with the model day plus 360, i.e., model day 60 is day
420 on the Figures.) Again, initial eddy formation was
pinpointed by looking for perturbations in the zonal velocity
field, which first occurred in the northern portion of the

model domain (Fig. 4.18).
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Eddy production is still due to both baroclinic and
barotropic transfer processes (Figs. 4.19a,b), but in this
case it is mostly baroclinic shear (4.19a) at day 60 (day
420). The baroclinic shear is dominant in this case because
the winds are poleward in the northern region of the model
domain, while the surface current is still equatorward,
causing a strong vertical shear between the poleward wind and
the equatorward surface current. The location for the eddy
formation is also modified. In the run from rest, eddies
initially form at the coast, while in this run they form not
only at the coast but also along the equatorward jet, as seen
by comparing the baroclinic instability (Fig. 4.19a) and the
surface velocity field (Fig. 4.20). The eddies that form along
the equatorward jet are examples of frontal instability
processes. A cross-section of meridional velocity at 46.5 . at
day 60 (day 420) again shows an equatorward jet overlying a
poleward undercurrent (Fig. 4.21), but the equatorward jet has
moved offshore and the poleward undercurrent has extended up
to the surface, establishing a poleward surface current.

The most dramatic difference between the experiments
started from rest (i.e., Experiments 1-5) and those that are
spun up from the climatological winds is that the latter show
evidence of filament formation during the upwelling season.
This is clearly seen in the surface temperature field (Fig.
4.22a). By day 150 (day 510) there are three filaments in

various stages of formation, with the largest extending to
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over 300 km offshore. Surface velocities in the filaments are
greater than 50 cm s' (Fig. 4.22b). The filaments are
approximately 60 km across and have spread out into a
hammerhead at the 1limit of their offshore extent, quite
similar to the filaments seen in observations (e.g., Fig.
2.1). Another major difference between the experiments started
from rest and those that were spun up from the climatological
winds is the evidence of frontal instabilities along the
coastal jet (seen in the northern portion of Fig. 4.19a).
2. Experiment 7

This experiment was forced with the 1983 winds, again
using model fields spun up for a period of 360 days with the
climatological average winds as initial conditions. The
results were quite similar to those for Experiment 6. However,
a cross-section of meridional velocity at 45°N at day 66 (day
426) (Fig. 4.23) does show that the surface poleward current
is much stronger and extends farther offshore than in 1980
(Fig. 4.21). As in Experiment 6, there is evidence of both
baroclinic (Fig. 4.24a) and barotropic (Fig. 4.24b)
instability processes. Again, comparing the regions of
baroclinic instability (Fig. 4.24a) to the surface velocity
field (Fig. 4.25) shows that eddies are forming not only at
the coast, but also along the equatorward jet.

Since the abnormally strong poleward winds during the
first 90 days of the year had to work against the existing

equatorward surface current, the effects were not as dramatic
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as the differences seen between the 1980 and 1983 runs
initjalized from rest (i.e., Experiments 2 and 5). However,
there were some notable differences between Experiments 6 and
7. A comparison of surface temperature for the two runs at day
150 (day 510) shows that the 1983 run (Fig. 4.26a) is
approximately 2° warmer than the 1980 run (Fig. 4.22a). In
addition, the filaments formed in 1983 extend only about 200
km offshore at this point in the year, as opposed to over 300
km for 1980. Note that the locations for filament formation in
Figs. 4.22a and 4.26a are nearly the same, indicating that
there is some geographical preference in locations for eddy
~and filament formation during the upwelling season, even
without including a coastline or bottom topography in the
model. A comparison of surface velocity fields at day 150 (day
$10) in the two experiments indicates that the magnitudes for
the current system as a whole are weaker and/or less developed

in 1983 (Fig. 4.26b) than in 1980 (Fig. 4.22b).

C. COMPARISON OF RESULTS WITH OBSERVATIONS OF THE CCS

Since this study isolates the effects of wind forcing only
on the CCS, quantitative comparisons of model results with
observations are not feasible. Particularly during the early
part of the year, the experiments that start from rest cannot
be compared with the CCS because the CCS is not at rest on

January 1 each year. However, after the experiments are
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allowed to spin up for a period of time, the model results may
be qualitatively compared with observations.

vable 5.1 (based on Batteen et al., 1989) shows model
results alongside some results of observations of the CCS.
Experiment 5 (1983) is dramatically different from Experiments
1 through 4 (Climatological average and 1980-1982), but
Experiments 6 (1980 spun up) and 7 (1983 spun up) are more
similar to each other. As expected, the experiments that were
started from a spun up state (Experiments 6 and 7) agree
better with the observations than do any of the experiments (1
through 5) that were started from rest. Also, no evidence of
filaments was seen in the experiments started from rest, but
they were found in both of the spun up experiments.

Table 5.2 shows qualitative results from both of the El
Nifio year experiments (5 and 7) alongside some observat osns of
the 1982-1983 CCS El Nifio characteristics. Note that since the
model does not include any kind of remote forcing or any
salinity forcing term, the oceanic teleconnection will not be
expressed in the model results. Even without the remote
forcing, however, there is good qualitative agreement with
observations from the 1982-1983 Californian E1l Nifio. Warmer
sea surface temperatures and evidence of onshore advection are
noted, especially during the first 90 days of the year (days
360-450). Also, the entire current system is weaker than in
the other model years, and poleward surface flow is enhanced.
This is strong evidence that anomalous atmospheric forcing

plays a major role in the generation of a CCS El Nifio event.
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Table 4.1 INSTANTANEOUS COMPARISON OF EXPERIMENTS (EXP.) wWiTN OBSERVATIONS (OBS) OF THE CCS.

Obs . Exp. Exp. Exp. Exp.
(References) 1-4 5 6 I4

A. Maximm coastal jet velocity (cm s') 30-100 (1,2,3,4) 80 80 100 100
8. Offshore location of coastal jet (km) 25-35 (2,3) 30-60 30-60 30-60 30-60
C. Offshore extent of coastal jet (km) »60 (1,2,3) 80-100 80-100 80-100 80-100
D. Depth of inshore cosstal jet (m) 90-150 (2,3) 175 175 175 175
E. Maximm undercurrent velocity (cm s*) 5-15 ¢2,3) 8 5 10 10
F. Offshore Location of undercurrent axis (km) 10-40 (2,3) 20-30 15-25 20-30 15-25
G. Maximum width of undercurrent (km) 10-20 (2,3} 40 4«0 40 40
H. Depth of undercurrent axis (m) 200-300 (2) 200 200 200 200
I. Maximm zonal eddy diameter (km) 10->100 (2,5,6,7) 200 200 220 220
J. Maximum zonal eddy velocity (em s')  50-100 (1,2,3,4,6,7) 60-90 75 100 8s

References: (1) Kosro and Huyer (1986)
(2) Huyer anc! Kosro (1987)
(3) Kosro (1987)
(4) Davis (1985)
(5) Mooers and Robinson (1984)
(6) Brink and Cowles (1991)
(7) Brink et al. (1991)
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TABLE 4.2 COMPARISON OF OBSERVED (OBS) AND MODEL EXPERIMENT (EXP)
QUALITATIVE CCS FEATURES SEEN DURING EL NINO YEARS

D.

El Nifilo Obs. compared to CCS Mean State Exp- Exp.
5 7
Warmer sea surface temperature (1,2,3) Simulated Simulated
Weaker overall current system (2) Simulated Simulated
Enhanced poleward flow (2,3) Simulated Simulated
Enhanced onshore advection (1,2,3) Simulated Simulated

Max equatorward surface current
farther offshore (2) Not Simulated Simulated

References: (1) Mooers and Robinson (1984)

(2) Simpson (1983)
(3) Simpson (1984)
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Figure 4.7a) Experiment 1: Baroclinic transfer of energy
(as defined in equation 3.18) from P’ to K’ (eddy available
to eddy kinetic energy). Transfer is averaged over days 120
to 126 and summed over the upper five layers. The contour
interval is 0.4 ergs cm™ s.
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Figure 4.7b) Experiment 1: Barotropic transfer of energy
(as defined in equation 3.19) from K to K’ (mean to eddy
kinetic energy). Transfer of energy is averaged ove- the
days 120 to 126 and summed over the upper five layers. The
contour interval is 0.4 ergs cm™ s™.
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Figgre 4.8 Experiment 1: Barotropic transfer of energy (as
defined in equation 3.19) from X to K’ (mean to eddy kinetic
energy). Transfer of enerqgy is averaged over the days 345

to 351 and summed over the upper five layers. The contour
interval is 25 ergs cm” s™.
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Figure 4.9 Experiment 1: Cross-section of meridional
velocity contours at approximately 46.5°N at day 345.
Contour interval is 1.1 cm s, Maximum values contoured are
+/- 25 cm s The dashed lines indicate southward flow and
show the equatorward surface current. The solid lines
indicate northward flow and show the poleward current.
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Figure 4.10 Experiment 1: Surface zonal velocity contours
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indicate offshore velocity.
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Figure 4.12a) Experiment 5: Surface zonal velocity contours
at day 66. Contour interval is 2 cm s@. Dashed lines
indicate offshore velocity.
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Figure 4.12b) Experiment 5: Surface temperature contours
day 66. Contour interval is 1 C. Temperature decreases
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Figure 4.12c) Experiment 5: Surface velocity in cm s at
day 66. As in Fig. 4.2a.
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Figqure 4.12d) Experiment 5: Surface dynamic height
(relative to 2500 m) contours at day 66. Contour interval is
0.5 cm. Dashed lines indicate negative dynamic height.
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Figure 4.13a) Experiment 5: Baroclinic transfer of energy
(as defined in equation 3.18) from P’ to K’ (eddy available
to eddy kinetic energy). Transfer is averaged over days 66
to 72 and summed over the upper five layers. The contour
interval is 5 ergs cm™® g™,
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Figure 4.13b) Experiment 5: Barotropic transfer of energy
(as defined in equation 3.19) from K to K’ (mean to eddy
kinetic energy). Transfer of energy is averaged over the
days 66 to 72 and summed over the upper five layers. The
contour interval is 5 ergs cm™ s.
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Figure 4.14 Experiment 5: Cross-section of meridional
velocity contours at approximately 47°N at day 66. Solid
lines indicate northward flow. Dashed lines indicate
equatorward flow. Contour interval is 1.1 cm s™.
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Figure 4.15a) Experiment 5: Surface zonal velocity contours
at day 159. Contour interval is 1 cm s. Dashed lines
indicate offshore flow.
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Figure 4.15b) Experiment 5: Surface dynamic height
(relative to 2500 m) contours at day 159. Dashed lines
indicate negative dynamic heights. Contour interval is 1 cnm.
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Figure 4.16 Experiment 5: Cross-section of meridional
velocity contours at approximately 41°N at day 159. Dashed
lines indicate southward flow and show the equatorward
surface current. Solid lines indicate northward flow and
indicate the poleward undercurrent. Contour interval is 1.1
cm s™. Maximum values shown are +/- 25 cm s.
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Figure 4.17a) Experiment 5: Baroclinic transfer of energy
(as defined in equation 3.18) from P’ to K’(eddy available
to eddy kinetic energy). Transfer is averaged over days 159
to 165 and summed over the upper five layers. The contour
interval is 20 ergs cm™ s,
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Figure 4.17b) Experiment 5: Barotropic transfer of energy
(as defined in equation 3.19) from K to K’ (mean to eddy
kinetic energy). Transfer of energy is averaged over the
days 159 to 165 and summed over the upper five layers. The
contour interval is 20 ergs cm™ s™.
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Figure 4.18 Experiment 6: Surface zonal velocity contours
at day 60. Dashed lines indicate offshore velocity.
Contour interval is 10 cm s™.
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Figure 4.19a) Experiment €: Baroclinic transfer of energy
(as defined in equation 3.18) from P’ to K’ (eddy available
to eddv kinetic energy). Transfer is averaged over days 60
to 66 and summed over the upper five layers. The contour
interval is 10 ergs cm™ s,
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Figure 4.19b) Experiment 6:

Barotropic transfer of energy

(as defined in equation 3.19) from K to K’ (mean to eddy
Transfer of energy is averaged over the
days 60 to 66 and summed over the upper five layers.

kinetic energy).

contour interval

is 10 ergs cm™® s™.
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Figure 4.20 Experiment 6: Surface velocity in cm s at day
60. As in Fig. 4.2a.
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Figure 4.21 Experiment 6: Cross-section of meridional
velocity contours at approximately 47°N at day 60. Dashed
lines indicate southward flow and show the equatorward
surface current. Solid lines indicate northward flow and
indicate the poleward currents. Contour interval is 1.1 cm
s™. Maximum values shown are +/- 25 cm s™.
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Figure 4.22a Experiment 6: Surface temperature contours at
day 150. Contour interval is 1°C.
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Figure 4.22b Experiment 6: Surface velocity in cm s at day
150. As in Fig. 4.2a.
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Figure 4.23 Experiment 7: Cross-section of meridional

velocity contours at approximately 45°N at day 66.
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lines indicate southward flow and show the offshore
equatorward surface current.
flow and show the poleward currents.
1.1 cm s™. Maximum values shown are +/- 25 cm s.
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Figure 4.24a) Experiment 6: Baroclinic transfer of energy
(as defined in equation 3.18) from P’ to K’ (eddy available
to eddy kinetic energy). Transfer is averaged over days 60
to 66 and summed over the upper five layers. The contour
interval is 10 ergs cm™ s.
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Figure 4.24b) Experiment 6: Barotropic transfer of energy
(as defined in equation 3.19) from K to K’ (mean to eddy
kinetic enerqgy). Transfer of energy is averaged over the
days 60 to 66 and summed over the upper five layers. The
contour interval is 10 ergs cm™ s™.
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V. SUMMARY AND RECOMMENDATIONS

A. SUMMARY

This study used a high-resolution primitive equation model
to isolate the effects of interannual differences in wind
forcing on current and eddy generation in the CCS. Wind fields
were used to force an idealized, flat-bottom eastern boundary
current model in seven experiments. Baroclinic and barotropic
analyses were made to describe the types of instability that
occurred. Model results were compared to each other and to
observations of the CCS.

Five experiments were initialized from a state of rest.
The results for 1980-1982 (Experiments 2 through 4) were very
similar to those for a climatological average (1980-1989) wind
field (Experiment 1), suggesting that these years are
representative of the "mean" state of the CCS. The results for
the 1983 winds (Experiment 5), however, were dramatically
different, and are at 1least qualitatively similar to
observations taken during a CCS El1 Nifio event. This is a
strong indication that anomalous atmospheric forcing plays a
large role in generating an El Nifio event in the CCS region.

Two experiments (6 and 7) were run with the 1980 and 1983
wind forcing applied to the velocity and temperature fields
saved at day 360 from the climatological average wind forcing

experiment. The results of these experiments were more similar
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to observations than the experiments that were started from
rest. They were the only experiments to display evidence of
cold filaments extending out from the California coast during
the upwelling season. The cyclonic eddies generated by the
1980 winds were larger than those in 1983, due to the longer
duration of the equatorward winds in the non-El Nifio year. The
anomalies in 1983 were not as strong in the experiment started
from existing eddy fields, apparently because the poleward
winds early in the year had to work against an existing
equatorward surface current.

Qualitative features of the 1982-1983 Californian El Nifio
were seen in experiments 5 and 7. A comparison of temperature
fields during the upwelling season in 1980 (Experiment 6) and
1983 (Experiment 7) does show a positive surface temperature
anomaly during the El1 Nifio (1983) year, even though the
temperature forcing used in the model is highly simplified and
there is no remote temperature forcing. The current system
also appeared to be weaker throughout the year in 1983 than in
1980, and there was evidence of enhanced poleward flow and

onshore advection at the surface in 1983.

B. RECOMMENDATIONS

Future studies should incorporate bottom topography and an
irregular coastline in order to study the role of topographic
steering of the currents and the possibility of preferred

locations for eddy generation. A continental shelf/slope
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should also result in a more realistic undercurrent. For
process-oriented studies, it is easier to analyze factors such
as time of initial eddy formation by starting the model from
rest, but more realistic (when compared with observations)
results are obtained by starting the model with an existing
eddy field. Therefore, either method may be used depending on
the objectives of the study.

In order to study El1 Nifio events, a more realistic
temperature forcing term should be used in the model, and
remote temperature forcing and a salinity forcing term should
also be considered. 1In order to model smaller scale and short
term effects such as local wind relaxations during the
upwelling season, winds that are higher in spatial and
temporal resolution should be used to force the model.

The overall objective of this study is to demonstrate the
hypothesis that wind variability in the coastal upwelling
region is a critical element in the formation and maintenance
of currents and eddies, with the specific objective of
assessing the role of interanual wind forcing in the CCS by
comparing model results from non-El Nifio years (e.g., 1980)
with those from E1l Nifio years (e.g., 1983). Since dramatically
different results were obtained by varying the wind forcing
only, it may be concluded that anomalous wind forcing plays a

major role in the generation of a Californian El Nifio event.
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Figure A.l Experiment 2: Surface velocity in cm s™' at day
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Figure A.4 Experiment 2: Baroclinic transfer of energy (as
defined in equation 3.18) from P' to K'
eddy kinetic energy). Transfer is averaged over days 90 to
96 and summed over the upper five layers. The contour

interval is 0.25 ergs cm® s°.
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96 and summed over the upper five layers. The contour
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Figure A.6 Experiment 3: Surface velocity in cm s” at day
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Figure A.7 Experimeht 3: Surface temperature contours at day
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Figure A.10 Experiment 3: Barotropic transfer of energy (as
defined in equation 3.19) from K to K' (mean to eddy kinetic
energy) . Transfer of energy is averaged over the days 96 to
102 and summed over the upper five layers. The contour
interval is 0.5 ergs cm” s”.
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Figure A.11 Experiment 4: Surface velocity in cm s® at day
114. Values for every third gridpoint are plotted. Minimum
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Figure A.14 Experiment 4: Baroclinic transfer of energy (as
defined in equation 3.18) from P' to K' (eddy available to
eddy kinetic energy). Transfer is averaged over days 114 to
120 and summed over the upper five layers. The contour
interval is 0.2 ergs cm” s’.

116




Distance off shore (km)

-1824.0 -853.3 -682.7 -512.8 -341.3 -170.7 0.8
1599.8 L | | ' ! !
| PP
1341 .2 Lesm
Lesse
1983.3 —
]
4
°
2 g25.5-
g Heam
(-]
s
]
(3]
]
o
-yod
2 567.7- {
A (
-H
309.8 — Hom a—
Lesm |
P
52.8 y T I

mm&mnwu1&4an12
Mean kinetic energy to eddy kinetic energy
average over model days 114.0 to 120.0

Figure A.l15 Experiment 4: Barotropic transfer of energy (as
defined in equation 3.19) from R to K' (mean to eddy kinetic
energy). Transfer of energy is averaged over the days 114
to 120 and summed over the upper five layers. The contour
interval is 0.2 ergs cm” s.
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